UMass study: Sea level rise will drive coastal flood risk

AMHERST — Although recent studies have focused on climate change impacts on the intensity and frequency of tropical cyclones, a research team led by Jon Woodruff of the University of Massachusetts finds that sea level rise and shoreline retreat are the two more certain factors expected to drive an increase in future flood risk from such storms.

Writing in the current special issue of Nature dedicated to coastal regions, geoscientist Woodruff and his co-authors say, “Society must learn to live with a rapidly evolving shoreline that is increasingly prone to flooding from tropical cyclones.”

Sea level rise and its potential to dramatically change the coastal landscape through shoreline erosion and barrier island degradation, for example, is an under-appreciated and understudied factor that could lead to catastrophic changes in flood risk associated with tropical cyclones, known as hurricanes in the North Atlantic, they say.

Woodruff adds, “There is general agreement that while globally, tropical cyclones will decline in frequency, their strength will be more intense. However, there is less consensus on the magnitude of these changes, and it remains unclear how closely individual regions of tropical cyclone activity will follow global trends.”

Despite these uncertainties, the UMass Amherst geoscientist notes, the intensity and frequency of flooding by tropical cyclones will increase significantly due to accelerated sea level rise. Further, the geologic record provides clear examples for the importance of accelerated sea level rise in initiating significant changes in shoreline behavior.

“The era of relatively moderate sea level rise that most coastlines have experienced during the past few millennia is over, and shorelines are now beginning to adjust to a new boundary condition that in most cases serves to accelerate rates of shoreline retreat,” he says.

The authors focus on three physical factors they say should be considered together to understand future coastal flooding from hurricanes: Tropical cyclone climatology, relative sea level rise and shoreline change. “Modes of climate variability explain 30 to 45 percent of the variance of tropical cyclone activity within the instrumental historical record. This percentage is far less, however, when considering only storms that make landfall,” they point out.

By contrast, “a future rise in sea level is far more certain, particularly along the coastlines most prone to tropical cyclone disruption. For example, a rise in sea level of 1 meter for the New York City region would result in the present-day 100-year flood events occurring every 3 to 20 years. Most engineered coastlines are not designed for this increase in extreme flood frequency, and the dominance of sea-level rise and landscape dynamics on impacts by landfalling tropical cyclones must be acknowledged for effective planning and management of our future coastlines,” Woodruff and colleagues write.

They add that “population centers most at risk of tropical cyclone impacts are mainly located along dynamic and subsiding sedimentary coasts that will serve to further enhance the impact of future tropical cyclone floods.” People can soften such impacts “partly with adaptive strategies, which include careful stewardship of sediments,” and by reducing human-caused land subsidence along many of the world’s most populated coastlines due to the extraction of groundwater, oil and gas.

There are no comments yet. Be the first!
Post a Comment

You must be registered to comment on stories. Click here to register.